ADC+DMA in stm32duino

Hello, I’m attemping to get ADC with DMA working in stm32duino/PIO on a stm32g431KB on a NUCLEO32 baord… My Strategy has been to contruct the app using the CubeMX designer + CubeMX-IDE, make sure it works,then move the code (with whatever changes are needed) into an Arduino sketch. I have been succsfull at getting a polled ADC app working in PIO this way, but NOT an ADC+DMA app…

My DMA app simplly DMAs ADC output into a big circular buffer and notifies at buffer=half and buffer=full. The app works perfectly in the STMCubeIDE, but NOT arduino: No notifications fire and only one (wrong) value at buffer[0]. I’ve pasted the arduino code below.

#include <Arduino.h>
#include <stm32g4xx_hal_adc.h>

// objects
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
UART_HandleTypeDef huart2;

// buffer
#define ADC_BUF_LEN 1024
uint16_t adc_buf[ADC_BUF_LEN];

// proto
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
void HAL_ADC_MspInit1(ADC_HandleTypeDef* hadc);
void HAL_ADC_MspDeInit1(ADC_HandleTypeDef* hadc);

void setup()
{

Serial.begin(921600); // WARNING: low value like 115200 cause distorted FOC
// for timer analysis
//delay(5000);
Serial.printf(“starting…\n”);

HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
//MX_USART2_UART_Init();
// use the MspInit from stm32g4xx_hal_msp.c
HAL_ADC_MspDeInit(&hadc1);
HAL_ADC_MspInit1(&hadc1);

// start DMA
HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buf, ADC_BUF_LEN );
}

void loop()
{
// display a few values at the start of the buffer
Serial.printf(“bufval=%d,%d,%d,%d,%d,%d,%d,%d\n”,
adc_buf[0],adc_buf[1],adc_buf[2],adc_buf[3],adc_buf[4],adc_buf[5],adc_buf[6],adc_buf[7] );

delay(10);

}

// {from main.c}************
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST);

/** Initializes the RCC Oscillators according to the specified parameters

  • in the RCC_OscInitTypeDef structure.
    */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
    RCC_OscInitStruct.HSIState = RCC_HSI_ON;
    RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
    RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
    RCC_OscInitStruct.PLL.PLLN = 85;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
    RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
    {
    Error_Handler();
    }

/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}

/**

  • @brief ADC1 Initialization Function
  • @param None
  • @retval None
    */
    static void MX_ADC1_Init(void)
    {

/* USER CODE BEGIN ADC1_Init 0 */

/* USER CODE END ADC1_Init 0 */

ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};

/* USER CODE BEGIN ADC1_Init 1 */

/* USER CODE END ADC1_Init 1 */

/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.GainCompensation = 0;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}

/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}

/** Configure Regular Channel
/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/
USER CODE BEGIN ADC1_Init 2 */

/* USER CODE END ADC1_Init 2 */

}

/**

  • @brief USART2 Initialization Function
  • @param None
  • @retval None
    */
    static void MX_USART2_UART_Init(void)
    {

/* USER CODE BEGIN USART2_Init 0 */

/* USER CODE END USART2_Init 0 */

/* USER CODE BEGIN USART2_Init 1 */

/* USER CODE END USART2_Init 1 /
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
{
Error_Handler();
}
/
USER CODE BEGIN USART2_Init 2 */

/* USER CODE END USART2_Init 2 */

}

/**

  • Enable DMA controller clock
    */
    static void MX_DMA_Init(void)
    {

/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();

/* DMA interrupt init /
/
DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**

  • @brief GPIO Initialization Function
  • @param None
  • @retval None
    /
    static void MX_GPIO_Init(void)
    {
    GPIO_InitTypeDef GPIO_InitStruct = {0};
    /
    USER CODE BEGIN MX_GPIO_Init_1 /
    /
    USER CODE END MX_GPIO_Init_1 */

/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET);

/*Configure GPIO pin Output Level */
// HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin : PA10 */
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

#if 0
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
#endif

/* USER CODE BEGIN MX_GPIO_Init_2 /
/
USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 /
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef
hadc)
{
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET);
}

/* USER CODE END 4 /
#if 0
/
*

  • @brief This function is executed in case of error occurrence.
  • @retval None
    /
    void Error_Handler(void)
    {
    /
    USER CODE BEGIN Error_Handler_Debug /
    /
    User can add his own implementation to report the HAL error return state /
    __disable_irq();
    while (1)
    {
    }
    /
    USER CODE END Error_Handler_Debug */
    }
    #endif

#ifdef USE_FULL_ASSERT
/**

  • @brief Reports the name of the source file and the source line number
  •     where the assert_param error has occurred.
    
  • @param file: pointer to the source file name
  • @param line: assert_param error line source number
  • @retval None
    */
    void assert_failed(uint8_t file, uint32_t line)
    {
    /
    USER CODE BEGIN 6 /
    /
    User can add his own implementation to report the file name and line number,
    ex: printf(“Wrong parameters value: file %s on line %d\r\n”, file, line) /
    /
    USER CODE END 6 /
    }
    #endif /
    USE_FULL_ASSERT */
    // ********************************************************************************************************

// {from stm32g4xx_hal_msp.c}**********

/**

  • @brief ADC MSP Initialization

  • This function configures the hardware resources used in this example

  • @param hadc: ADC handle pointer

  • @retval None
    /
    void HAL_ADC_MspInit1(ADC_HandleTypeDef
    hadc)
    {
    GPIO_InitTypeDef GPIO_InitStruct = {0};
    RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
    if(hadc->Instance==ADC1)
    {
    /* USER CODE BEGIN ADC1_MspInit 0 */

    /* USER CODE END ADC1_MspInit 0 */

    /** Initializes the peripherals clocks
    */
    PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
    PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
    if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
    {
    Error_Handler();
    }

    /* Peripheral clock enable */
    __HAL_RCC_ADC12_CLK_ENABLE();

    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**ADC1 GPIO Configuration
    PA0 ------> ADC1_IN1
    */
    GPIO_InitStruct.Pin = GPIO_PIN_0;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* ADC1 DMA Init /
    /
    ADC1 Init */
    hdma_adc1.Instance = DMA1_Channel1;
    hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
    Error_Handler();
    }

    __HAL_LINKDMA(hadc,DMA_Handle,hdma_adc1);

    /* USER CODE BEGIN ADC1_MspInit 1 */

    /* USER CODE END ADC1_MspInit 1 */
    }

}

/**

  • @brief ADC MSP De-Initialization

  • This function freeze the hardware resources used in this example

  • @param hadc: ADC handle pointer

  • @retval None
    /
    void HAL_ADC_MspDeInit1(ADC_HandleTypeDef
    hadc)
    {
    if(hadc->Instance==ADC1)
    {
    /* USER CODE BEGIN ADC1_MspDeInit 0 */

    /* USER CODE END ADC1_MspDeInit 0 /
    /
    Peripheral clock disable */
    __HAL_RCC_ADC12_CLK_DISABLE();

    /**ADC1 GPIO Configuration
    PA0 ------> ADC1_IN1
    */
    HAL_GPIO_DeInit(GPIOA, GPIO_PIN_0);

    /* ADC1 DMA DeInit /
    HAL_DMA_DeInit(hadc->DMA_Handle);
    /
    USER CODE BEGIN ADC1_MspDeInit 1 */

    /* USER CODE END ADC1_MspDeInit 1 */
    }
    }

// ********************************************************************************************************